Внедрение Gigabit Ethernet
При передаче данных штрафы за превышение скорости никто не выписывает. Gigabit Ethernet становится самой быстрой из имеющихся технологий организации взаимодействия по сети на короткие расстояния. Она опирается на все те же компоненты Ethernet, с которыми проектировщики и администраторы хорошо знакомы, и занимает отличную позицию, чтобы в течение следующих нескольких лет стать самой быстрой связующей технологией для локальных, территориальных и даже городских сетей. Однако такие факторы, как скорость и новизна, затрудняют развертывание этой технологии.
Рабочие комитеты IEEE заняты формализацией работы Gigabit Ethernet по оптике, меди и даже для независимого от среды передачи уровня (для шин и межсоединений кластеров). На настоящий момент только один из этих комитетов — IEEE 802.3z — подготовил соответствующий стандарт. 29 июня 1998 года он ратифицировал P802.3z DF (Draft 5) для Gigabit Ethernet по оптическому кабелю. Стандарт прошел через несколько черновых вариантов, главным образом из-за наличия нескольких типов оптического кабеля и различных методов инсталляции Gigabit Ethernet.
Очевидно, что принятый стандарт на Gigabit Ethernet по оптическому кабелю не гарантирует гладкой реализации. Новизна технологии означает неизбежную несовместимость (и другие проблемы). Поэтому, прежде чем внедрять Gigabit Ethernet в своей сети, вы должны разобраться в ограничениях технологии и в том, как они повлияют на ее реализацию.
Стандарт | Тип волокна | Диаметр (в микронах) | Модальный диапазон (в МГц на км) | Минимальный диаметр (в метрах) |
1000BaseSX | MM | 62,5 | 160 | от 2 до 220* |
1000BaseSX | MM | 62,5 | 200 | от 2 до 275** |
1000BaseSX | MM | 50 | 400 | от 2 до 500 |
1000BaseSX | MM | 50 | 500 | от 2 до 550*** |
1000BaseLX | MM | 62,5 | 500 | от 2 до 550 |
1000BaseLX | MM | 50 | 400 | от 2 до 550 |
1000BaseLX | MM | 50 | 500 | от 2 до 550 |
1000BaseLX | SM | 9 | отсутств. | от 2 до 550 |
Примечания. * Стандарт на проводку внутри зданий TIA 568 определяет многомодовый оптический кабель 160/500 МГц на км. ** Международный стандарт на проводку внутри зданий ISO/IEC 11801 определяет 50-микронный многомодовый оптический кабель 200/500 МГц на км. *** Спецификация ANSI Fibre Channel определяет 50-микронный многомодовый оптический кабель 500/500 МГц на км; данный кабель было предложено ввести в стандарт ISO/IEC 11801. |
При развертывании Gigabit Ethernet вы должны учитывать три основных ограничения. Первое из них очевидно: сеть должна иметь проложенные оптические кабели. Кроме того, вы ограничены в выборе типов оптического кабеля, потому что один набор стандартов применим к одномодовому кабелю, а другой — к многомодовому (см. Таблицу 5). В настоящее время соединения между сетевыми платами и коммутаторами нельзя свободно переводить с одно- на многомодовый кабель, так что вы должны остановить свой выбор на одном из них. Вообще же, многомодовые соединения должны работать с другими многомодовыми соединениями, а одномодовые — с другими одномодовыми. "Должны" — здесь ключевое слово, так как новизна стандарта означает, что пока лишь немногие устройства различных производителей были протестированы на совместимость. Gigabit Ethernet Alliance продемонстрировал на сетевых выставках правомочность концепции, но тестирование всевозможных комбинаций отнимет у производителей определенное время.
Второе ограничение — системное: пропускная способность шины ПК или системы среднего класса может оказаться ниже, чем у Gigabit Ethernet. Старые машины могут оказаться не в состоянии в полном объеме использовать теоретическую скорость Gigabit Ethernet (целых 125 Мбайт/с).
Проблема не нова. Сетевые технологии и системные шины шли вровень в состязаниях на скорость со времен изобретения Ethernet. Читатель может вспомнить, что произошло с ПК эры AT при их использовании с обычным Ethernet. Шина ISA (ПК) и шина SCSI (Mac) едва справлялись со своей работой, в особенности когда несколько плат шины или периферийных устройств требовали их внимания. С изобретением таких новых типов шин, как Microchannel (IBM PS/2 и NCR) и EISA (Compaq Computer и многие другие), скорость шины обогнала скорость передачи данных по сети, но ненадолго.
Шина PCI была разработана для поддержки быстрых интерфейсов (трехмерные графические платы, шина SCSI и т. п.) и реализуется теперь в серверах, которые Microsoft и Intel называют стандартным высокопроизводительным сервером (Standard High Volume, SHV). Спецификация SHV описывает метод организации моста для 32-разрядной шины PCI с внешней и внутренней шиной; со временем она будет предусматривать то же для высокоскоростной 64-разрядной архитектуры шины PCI.
Третье и основное ограничение Gigabit Ethernet — это цена. Несмотря на то что стоимость соединения Gigabit Ethernet быстро падает с точки зрения цены сетевых плат и концентраторов (600 долларов за порт без учета сетевой платы), вы не должны забывать и о скрытых затратах, связанных с компьютерными системами, например Gigabit Ethernet требует приобретения вычислительной техники с более быстрыми шинами. Отраслевые эксперты сходятся во мнении, что сравнимое с Fast Ethernet падение цен произойдет не раньше, чем появится стандарт на Gigabit Ethernet для медного кабеля и, соответственно, возрастет спрос.
Некоторые связанные с развертыванием Gigabit Ethernet проблемы смягчаются тем, что эта технология представляет собой более быструю версию Ethernet. Как и Ethernet, и Fast Ethernet, технология Gigabit Ethernet следует методу множественного доступа с контролем несущей и обнаружением коллизий (Carrier Sense Multiple Access with Collision Detection, CSMA/CD). В этой связи только одно различие между Gigabit Ethernet и ее предшественниками достойно упоминания: метод расчета домена коллизий должен быть изменен для учета увеличения скорости.
До Gigabit Ethernet более быстрые топологии Ethernet реализовывались посредством уменьшения диаметра домена коллизий пропорционально увеличению скорости. Чтобы сохранить диаметр домена коллизий Gigabit Ethernet равным 200 м, минимальный размер передаваемого пакета Gigabit Ethernet был увеличен с 64 до 512 байт.
Без этого изменения Gigabit Ethernet был бы подвержен чрезмерно частым коллизиям, так как конечные узлы могли вовремя не услышать передачу данных другим узлом. Длительный сигнал при начале передачи позволяет предупредить другие узлы, чтобы они воздержались от собственной передачи. (Ввиду того, что минимальный размер пакета Ethernet составляет 64 байт, за время передачи 512 байт передающая сторона может отправить несколько пакетов. Длинные пакеты размером до максимально допустимых 1514 байт вполне возможны.)
Несмотря на нетипичный диаметр домена коллизий, Gigabit Ethernet по-прежнему использует типы кадров IEEE 802.3. Поэтому Gigabit Ethernet может служить в качестве высокоскоростной магистрали и, потенциально, заменить другие типы магистральных технологий или выступать в качестве высокоскоростного межсоединения между равноправными устройствами, рабочими группами или серверами.
Проектировщики сетей и первые производители продуктов для Gigabit Ethernet предложили различные применения для этой технологии. Эти предложения можно разделить на три основные категории: магистрали, клиент-серверные сети, рабочие группы. В зависимости от категории каждое межсоединение Gigabit Ethernet имеет свою топологию, но любая архитектура использует ее скорость для высокоскоростного транспорта. Однако большая часть выпускаемых компьютеров не способна в полной мере воспользоваться преимуществами в скорости из-за своих шин.
Наиболее распространенное применение технологии — в качестве магистрали для повышения общей пропускной способности коммутируемого Fast Ethernet.
Многими организациями используется одновременно и Ethernet, и Fast Ethernet. Основная причина создания такой гибридной сети лежит, как правило, в области финансов и/или кабельной системы. Несмотря на то что многие организации приобретают двухскоростные сетевые платы Ethernet на 10/100 Мбит/с вот уже несколько лет, редкая организация применяет исключительно Fast Ethernet, так как она ранее вложила средства в концентраторы Ethernet и/или проводку Категории ниже 5. Со временем, однако, локально-сетевые архитектуры Fast Ethernet должны стать повсеместными, и Gigabit Ethernet станет популярным средством для связи коммутаторов между собой.
Причина этого в том, что во многих организациях сеть развивается в соответствии с иерархической моделью, где большая часть настольных систем подключается к сети с помощью концентраторов или коммутаторов Ethernet третьего уровня. В общем случае лишь немногие пользователи имеют соединения Fast Ethernet, причем эти машины часто подключаются через иерархическую цепочку концентраторов Fast Ethernet. Вершину иерархии составляет коммутатор Fast Ethernet, маршрутизатор или мост в магистральную сеть ATM или FDDI.
В иерархической сети Gigabit Ethernet реализуется как замена "не-Ethernet" магистрали. Основание отказа от ATM в том, что ATM на магистрали функционирует со скоростью 655 Мбит/с — медленнее, чем Gigabit Ethernet. Кроме того, для реализации Ethernet поверх ATM кадры Ethernet должны электронным образом преобразовываться в ячейки ATM, а эмуляция сети Ethernet должна быть реализована в виде канала через сеть ATM. Такая конфигурация не только неэффективна, но и сложна для управления и аудита.
Основания для отказа от FDDI во многом те же (хотя FDDI может быть более эффективным, чем ATM, так как он реализовывался как транспорт данных, тогда как ATM — как телефонный транспорт). Один из немногих доводов в пользу ATM — ATM для OC-16 и OC-48, так как они быстрее Gigabit Ethernet и могут в конечном итоге конкурировать с Gigabit Ethernet за место на магистрали.
В клиент-серверной модели настольные ПК или приложения Web привязываются к серверу или парку серверов. Эта архитектура может использоваться от простейших приложений типа сервисов файлов и печати до сложнейших запросов к базам данных.
Методика под названием агрегирование линий представляет собой популярный способ преодоления ограничений на пропускную способность для одной сетевой платы. Используемое, как правило, с соединениями Ethernet агрегирование линий позволяет серверу передавать и принимать больше данных за счет установки дополнительных сетевых плат и, таким образом, за счет увеличения числа портов ввода-вывода (каждая плата подключается к сети независимо).
Если только ATM-155 или FDDI не применяется на магистрали, с парком серверов или в центре управления сети, соединение Fast Ethernet с сервером может стать узким местом. Это происходит потому, что физическая линия связи с сервером используется пользователями последовательно, а не одновременно. Добавление сетевых соединений (обычно в виде сетевых плат) на сервер дает пользователям дополнительные линии связи с сервером через коммутирующую структуру. Установка плат Fast Ethernet с распределением нагрузки между ними позволяет повысить пропускную способность серверных ресурсов. Однако это преимущество сходит на нет, когда шина в сервере насыщается или когда свободных слотов шины больше не остается.
Добавление одной платы Gigabit Ethernet на сервер обеспечивает гораздо более высокую гибкость процедуры ввода-вывода. Оно позволяет увеличить скорость линии в восемь (при замене ATM на 155 Мбит/с) или в 10 раз (при замене Fast Ethernet). К сожалению, установка еще нескольких сетевых плат Gigabit Ethernet на сервер с подключением их к коммутирующей структуре не приведет к линейному росту пропускной способности, так как шины сервера просто не смогут справиться с возросшим объемом трафика. Более быстрые шины, как вышеупомянутая спецификация SHV, решают эту проблему.
Тем не менее сервер получает значительный выигрыш в производительности в результате введения Gigabit Ethernet в коммутируемую сетевую структуру — при условии, естественно, что производительность сервера адекватна скорости сети. Недостаток же в том, что без изменения размера пакета Ethernet сегодняшние серверы должны будут иметь дело с пропускной способностью на порядок более быстрой, чем им приходилось встречать до сих пор. Более крупные, потоковые пакеты увеличат эффективность тех приложений, которым требуется передавать крупные блоки данных, и тех, которым требуется качество услуг для исключения задержек.
При наличии парка серверов распределение нагрузки между серверами становится важным фактором при проектировании сети. Коммутаторы Gigabit Ethernet таких производителей, как Extreme Networks, позволяют связать серверы высокоскоростной магистралью с помощью Gigabit Ethernet. Эта модель идентична модели с магистралью Ethernet/Fast Ethernet между серверами, которую сегодня используют многие организации, и она обеспечивает ту же самую гибкость.
Та же модель может быть применена и в рабочих группах, где приложениям требуется высокая скорость передачи данных. Склады данных, резервные системы, графика, видео и другие приложения с обработкой больших объемов данных сталкиваются с намного меньшей задержкой при более быстром транспорте, к тому же компании не придется переплачивать сотрудникам за то, что они бьют баклуши в ожидании получения данных от сетевого ресурса.
Помимо ускорения приложений Gigabit Ethernet (благодаря поддержке протокола резервирования ресурсов (Resource Reservation Protocol, RSVP), транспортного протокола реального времени (Real-Time Transfer Protocol, RTP) и протокола управления передачей в реальном времени (Real-Time Control Protocol, RTCP)) позволяет также сохранять популярные атрибуты качества услуг (Quality of Service, QoS), которые они могут иметь. Поддержка будущих протоколов может потребовать модернизации программного/микропрограммного обеспечения коммутаторов и маршрутизаторов аналогично тому, как этого требуют устройства Fast Ethernet.
Успех реализации Gigabit Ethernet зависит от нескольких факторов: потребности в пропускной способности, ограничений на расстояние, поддержки производителей и планов на будущее.
Каждая организация предъявляет свои требования к пропускной способности. Среди заслуживающих рассмотрения факторов — объем подлежащих передаче через сеть данных, число пользователей в вашей среде и типы поддерживаемых приложений.
Добавление Gigabit Ethernet невозможно без наличия определенного числа портов на коммутаторе, так как такие устройства, как коммутаторы/концентраторы Fast Ethernet или серверы файлов и баз данных, может потребоваться подключить к концентратору или коммутатору Gigabit Ethernet.
Коммутаторы поставляются в блокирующей и неблокирующей разновидностях. Ввиду того, что коммутаторы представляют собой матрицы соединений, блокирующие коммутаторы не могут обслуживать все обмены данными между всеми портами одновременно. Вместе с тем неблокирующий коммутатор в состоянии обслуживать все работающие порты в соответствии с занятостью целевого порта, поэтому он предпочтительнее для большинства организаций. Проблема с неблокирующими коммутаторами, конечно, в том, что увеличение числа портов ведет к почти логарифмическому росту цен.
Транспорт Gigabit Ethernet бывает двух видов: полу- и полнодуплексный. Полнодуплексный транспорт имеет два канала: один — для передачи, а другой — для приема. Термин "полудуплексный транспорт" означает, что одному каналу приходится обслуживать прием и передачу последовательно, в результате — по крайней мере теоретически — полудуплексные устройства в два раза медленнее полнодуплексных.
Ограничения на расстояние в Gigabit Ethernet — еще один вопрос, с которым вам придется так или иначе считаться. Успех реализации определяется главным образом тем, какого рода оптический кабель уже проложен в вашей среде — если только вы не решитесь на прокладку нового кабеля.
Сегодня ограничения на расстояние самым существенным образом влияют на то, как Gigabit Ethernet реализуется в областях с проложенным оптическим кабелем, потому что тип кабеля (стандартом определяется несколько возможных типов) обусловливает максимальную протяженность соединения. Расстояния между имеющимися распределительными щитами, большие, чем диаметр домена коллизий, и необходимость дополнительно размещать повторители и другие подобные устройства — все это осложняет проектирование и развертывание технологии во многих организациях.
Протяженность кабеля в случае Gigabit Ethernet может варьироваться от 220 до 5000 м в зависимости от его типа. Однако один из производителей — Nbase/MRV — представил технологию, с помощью которой, по его заявлению, Gigabit Ethernet может работать на расстояниях от 18 м до 110 км за счет конвертации сигналов Gigabit Ethernet в нестандартные сигналы, и обратно. Проектировщикам следует иметь в виду, что это нестандартное "расширение стандарта".
Из-за того, что медные версии пока не стандартизованы, реализации для проводки Категории 5 станут возможны не ранее середины 1999 года. Но даже после принятия стандарта кабельные системы, соответствующие EIA/TIA Категории 5, потребуется сертифицировать. Причина этого состоит в том, что Gigabit Ethernet по UTP будет использовать все четыре пары, причем каждая из них будет нести сигнал, составляющий одну четвертую общего сигнала. Некоторые из организаций, где проложенная проводка Категории 5 не соответствует спецификациям, могут столкнуться с тем, что их инсталляция не отвечает предъявляемым требованиям, а это означает дорогостоящую модернизацию. Fast Ethernet прощает ошибки в инсталляции в том, что касается характеристик отношения сигнала к шуму, чувствительности к переходному затуханию и ограничений на расстояние, но Gigabit Ethernet, скорее всего, потребует тщательного выполнения требований. Вам придется платить из собственного кармана за недостатки унаследованной проводки.
Взаимодействие возможно между двумя видами оборудования Gigabit Ethernet: 1000BaseLX и 1000BaseSX. Стандарт LX предназначен для работы по одномодовому кабелю на расстояниях до 5000 м, а версия SX — для работы по многомодовому кабелю при расстояниях до 550 м. Проданное до принятия стандарта оборудование может и не работать с другим оборудованием. Совместимое со стандартом оборудование должно взаимодействовать с другим аналогичным, когда это допускает стандарт (ввиду того, что LX и SX используют разные методы сигнализации, они несовместимы между собой).
Реализация Gigabit Ethernet будет во многом зависеть от того, какое оборудование вы используете. Производители серверов спокойно отнеслись к появлению Gigabit Ethernet. Во-первых, они принимают меры для повышения пропускной способности шин. Во-вторых, они отчетливо осознают, что платы Gigabit Ethernet с их способностью передавать миллионы пакетов в секунду могут поглотить все ресурсы ЦПУ, в результате чего работа серверов будет застопорена. Некоторые из них, например Compaq/Digital Equipment, обсуждают планы использования пакетов нестандартных размеров, так называемых гигапакетов, в стремлении сократить число пакетов, с которыми сетевой плате Gigabit Ethernet и подключенной к ней шине придется иметь дело. Вообще, длинные пакеты воспринимаются в качестве способа преодоления проблемы контроля передаваемых пакетов как дискретных событий.
Среди других требующих рассмотрения при проектировании вопросов — управление сетью и последующий рост сети. Что касается управления, добавление Gigabit Ethernet означает обычно возможность задействовать имеющиеся протоколы и инструменты управления сетью. Вы можете интегрировать основные платформы управления сетью, такие, как ManageWise или OpenView, с приложениями для мониторинга, поставляемыми вместе с устройствами Gigabit Ethernet, такими, как концентраторы, коммутаторы и маршрутизаторы.
Что касается последующего роста, коммутаторы и маршрутизаторы Gigabit Ethernet могут следовать той же иерархической модели, что и связующее оборудование Fast Ethernet, где коммутация привносит контроль за коллизиями и фильтры маршрутов, а также упорядочивает трафик.
Для многих организаций будущая судьба Gigabit Ethernet связана с принятием рабочей группой IEEE 802.3ab стандарта на версию Gigabit Ethernet для неэкранированной витой пары. Оптические соединения между концентраторами и коммутаторами Gigabit Ethernet будут, скорее всего, организоваться в соответствии с уже имеющимися планами в отношении Fast Ethernet, так что соответствующее оборудование может быть заменено непосредственно без изменений в имеющейся кабельной системе. Это означает, что иерархическая модель будет служить в качестве платформы для последующей миграции к Gigabit Ethernet. Появление плат на 100/1000 Мбит/с после принятия стандарта, думается, не заставит себя ждать.
Создать коммутатор Gigabit Ethernet не так-то просто. Конструкция неблокирующего координатного коммутатора с дополнительными портами требует введения все более быстрых внутренних компонентов и коммутирующих микросхем. Новые 3,5-микронные полупроводниковые технологии делают возможным создание микросхем Gigabit Ethernet на одном кристалле, но следующее поколение коммутаторов Gigabit Ethernet и их многогигабитных последователей может потребовать еще более тонкого напыления.
Скорость света изменить нельзя, так что задержки приобретают критическое значение для высокоскоростных сетевых технологий. Это означает, что в краткосрочной перспективе успех развертывания Gigabit Ethernet будет зависеть от точности определения того, где ее скорость может иметь преимущества и где она может быть реализована поверх имеющейся среды передачи. В противном случае модернизация снова встает на повестку дня.